# Progress3.MM

Sequence of two catalyzed 1st order Michaelis Menten-type irreversible reactions.

Model number: 0270

Run Model: |
Help running a JSim model. |

(JSim model applet may take 10-20 seconds to load.)

## Description

Two irreversible reactions are governed by Michaelis-Menten kinetics. Consider the following two cases for the first reaction, dA/dt = -VmaxA*A/(KmA+A) : Case 1: A<<KmA, The reaction rate is ~VmaxA/Kma and the flux is VmaxA*(A/KmA)<<VmaxA. Case 2: A>>KmA. The reaction rate is ~VmaxA/A and the flux is VmaxA. The reaction rate is slowest when A<<KmA. The flux is greatest when A>>KmA.Figure plots concentration (mM) as a function of time of substrate A and its reaction products B and C.

## Equations

Where Concentrations and K_{m} are in mM, and V_{max} has units of mM/sec.

## Download JSim model project file

## References

## Related Models

Single Compartment Models:

- Comp1Decay: Single Compartment with Decay,
- Comp1Flow: Single Compartment with Flow,
- Comp1FlowDecay: Single Compartment with Flow and Decay,
- Comp1Reaction: Single Compartment with One Reaction,
- Comp1FlowReaction: Single Compartment with Flow and One Reaction,
- Comp1FlowReactions2: Single Compartment with Flow and Two Reactions,

Two Compartment Models:

- Comp2Exchange: Two Compartments with Exchange,
- Comp2ExchangeReaction: Two Compartments with Exchange and One Reaction,
- Comp2FlowExchange: Two Compartments with Flow and Exchange Fit to a data set,
- Comp2FlowExchangeReaction: Two Compartments with Flow, Exchange, and One Reaction.
- Comp2FlowMMExchangeReaction: Two Compartments with Flow, Exchange using a Michaelis-Menten transporter, and One Reaction.
- Comp2FlowMRIContrast: Two Compartments with Flow, conversion of water to water spin for MRI contrast.
- Cortisol secretion: Two compartments with feedback control of precursor to cortisol and its adrenal secretion.

N>2 Compartment Models:

- Comp3FlowExch: Three compartmental model for plasma, interstitial fluid, and parenchymal cell,
- Comp6Propofol: Six compartmental model for propofol anaesthesia,
- CTEX10: N Compartments in series with Flow, emphasizes sensitivity analysis and optimization,
- CTEX10stat: CTEX10 model with statistics on inflow and outflow curves,
- CTEX20: N Compartments in series with Flow, each compartment exchanging with a compartment in parallel,
- CTEX20 5 path: Weighted sum of up to 5 paths of CTEX 20 modeled capillaries.
- CompNFlowDelay: N Compartments in series with Flow and Delay.
- Comp6_Recirc: Six compartmental recirculating model,
- Comp2x2Recirc: Dual two compartment models with recirculation and clearance,

Osmotic Exchange:

- Uncoupled fluxes of water and solute across membrane.
- Uncoupled fluxes of water and solute across membrane w/ columns for measuring pressure.
- Transport of a hard spherical solute through a cylindrical pore.

Pharmacology:

- Washout curve simulation by sum of three decaying exponentials.
- Three reactions in series with no enzymes.
- Michaelis-Menton reactions in series.
- Enzymatic reactions in series.
- Four sequential enzymatic reactions.

## Key Terms

## Model Feedback

We welcome comments and feedback for this model. Please use the link below to send comments:

## Model History

Get Model history in CVS.## Acknowledgements

Please cite **www.physiome.org** in any publication for which this software is used and send one reprint to the address given below:

The National Simulation Resource, Director J. B. Bassingthwaighte, Department of Bioengineering, University of Washington, Seattle WA 98195-5061.

[This page was last modified 14Mar18, 3:17 pm.]

**Model development and archiving support at
physiome.org provided by the following grants:** NIH U01HL122199 Analyzing the Cardiac Power Grid, 09/15/2015 - 05/31/2020, NIH/NIBIB BE08407 Software Integration,
JSim and SBW 6/1/09-5/31/13; NIH/NHLBI T15 HL88516-01 Modeling for Heart, Lung and Blood: From Cell to Organ,
4/1/07-3/31/11; NSF BES-0506477 Adaptive Multi-Scale Model Simulation,
8/15/05-7/31/08; NIH/NHLBI R01 HL073598 Core 3: 3D Imaging and Computer
Modeling of the Respiratory Tract, 9/1/04-8/31/09; as well as prior
support from NIH/NCRR P41 RR01243 Simulation Resource in Circulatory Mass
Transport and Exchange, 12/1/1980-11/30/01 and NIH/NIBIB R01 EB001973
JSim: A Simulation Analysis Platform, 3/1/02-2/28/07.