# HbO.compare

Compare Models of Hemoglobin O2 saturation curve at varied levels of PCO2 and pH.

Model number: 0035

Run JSim model Applet: |
JSim Tutorial |

(JSim model applet may take 10-20 seconds to load.)

## Description

Hb-O2 sauration curves showing Bohr effect (higher CO2 reducing the affinity of Hb for O2, Lower pH does similarly). (DPG is 4.65 mM and temperature 37.5C,). Parameters from Dash and Bassingthwaighte 2004. These parameters are such that P50 for Hb-O2 saturation is 26 mmHg when RBC pH is 7.4 and pCO2 is 40 mmHg. The model is accurate through the physiological range of PO2s above 20 mmHg. Solutions are steady-state, calculated algebraically. The program is set to find saturation at each PCO2 from 0 to 100 mmHg.

## Equations

The equations for this model may be viewed by running the JSim model applet and clicking on the Source tab at the bottom left of JSim's Run Time graphical user interface. The equations are written in JSim's Mathematical Modeling Language (MML). See the Introduction to MML and the MML Reference Manual. Additional documentation for MML can be found by using the search option at the Physiome home page.

## Download File

## References

Adair GS. The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J Biol Chem 63: 529-545, 1925. Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii, 1910 Hill R. Oxygen dissociation curves of muscle hemoglobin. Proc Roy Soc Lond B 120: 472-480, 1936. Roughton FJW, Deland EC, Kernohan JC, and Severinghaus JW. Some recent studies of the oxyhemoglobin dissociation curve of human blood under physiological conditions and the fitting of the Adair equation to the standard curve. In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. Proceedings of the Alfred Benzon Symposium IV Held at the Premises of the Royal Danish Academy of Sciences and Letters, Copenhagen 17-22 May, 1971, edited by Rorth M and Astrup P. Copenhagen: Munksgaard, 1972, p. 73-81. Winslow RM, Swenberg M-L, Berger RL, Shrager RI, Luzzana M, Samaja M,and Rossi-Bernardi L. Oxygen equilibrium curve of normal human blood and its evaluation by Adair's equation. J Biol Chem 252: 2331-2337, 1977.

## Related Models

- HbO Hill slow binding
- HbO.Hill
- Hb Independent
- Hb Cooperative
- HbO.Adair
- HbO.Dash
- Total Blood oxygen content
- HbO.Severinghaus
- Wyman-Changeux-Monod 2 state

## Key Terms

## Model Feedback

We welcome comments and feedback for this model. Please use the button below to send comments:

## Model History

Get Model history in CVS.## Acknowledgements

Please cite **www.physiome.org** in any publication for which this software is used and send one reprint to the address given below:

The National Simulation Resource, Director J. B. Bassingthwaighte, Department of Bioengineering, University of Washington, Seattle WA 98195-5061.

[This page was last modified 02Nov16, 3:59 pm.]

**Model development and archiving support at
physiome.org provided by the following grants:** NIH/NIBIB BE08407 Software Integration,
JSim and SBW 6/1/09-5/31/13; NIH/NHLBI T15 HL88516-01 Modeling for Heart, Lung and Blood: From Cell to Organ,
4/1/07-3/31/11; NSF BES-0506477 Adaptive Multi-Scale Model Simulation,
8/15/05-7/31/08; NIH/NHLBI R01 HL073598 Core 3: 3D Imaging and Computer
Modeling of the Respiratory Tract, 9/1/04-8/31/09; as well as prior
support from NIH/NCRR P41 RR01243 Simulation Resource in Circulatory Mass
Transport and Exchange, 12/1/1980-11/30/01 and NIH/NIBIB R01 EB001973
JSim: A Simulation Analysis Platform, 3/1/02-2/28/07.