# TranspMM.2sol2sided.Distrib2F

Two region capillary-tissue exchange model with both passive and Michaelis-Menton (MM) transport of two solutes with MM reaction of A to B in interstitial fluid region.

Model number: 0025

Run Model: |
Help running a JSim model. |

## Figure

## Description

This is a two solute (A and B), one-dimensional, two region convection-permeation-
diffusion-reaction model. The plasma region has flow, Fp, volume Vp, first order
consumption, GpA and GpB, axial diffusion coefficients, DpA and DpB, and two
exchange mechanisms between the plasma and interstitial fluid(isf) regions: a
passive exchange process governed by PSg through the interendothelial clefts,
and a Michaelis-Menten membrane 2-sided competitive transport process for both
solutes in both regions. The parameter units are physiological, that is, "per gram
of tissue" to facilitate using this model to represent a homogenously perfused organ.

The (isf) region has volume Visf, first order consumption, GisfA and GisfB, axial
diffusion coefficients, DisfA and DisfB, the two exchange mechanisms already mentioned,
and a Michaelis-Menten conversion of Aisf to Bisf, governed by Ga2b and Kma2b.

## Relevant Equations

The equations for this model may also be viewed by running the JSim model applet and clicking on the Source tab at the bottom left of JSim's Run Time graphical user interface. The equations are written in JSim's Mathematical Modeling Language (MML). See the Introduction to MML and the MML Reference Manual. Additional documentation for MML can be found by using the search option at the Physiome home page.

## Download JSim project file

## References

Sangren WC and Sheppard CW. A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment. Bull Math Biophys 15: 387-394, 1953 (This gives an analytic solution for the two-region model.) Goresky CA, Ziegler WH, and Bach GG. Capillary exchange modeling: Barrier-limited and flow-limited distribution. Circ Res 27: 739-764, 1970. (This gives another derivation of the analytical form, and uses the model in both single and multicapillary models. Bassingthwaighte JB. A concurrent flow model for extraction during transcapillary passage. Circ Res 35: 483-503, 1974. (This gives numerical solutions, which are faster than the analytic solutions, and imbeds the model in an organ with tissue volums conserved, and with arteries and veins. The original Lagrangian sliding fluid element model with diffusion.) Guller B, Yipintsoi T, Orvis AL, and Bassingthwaighte JB. Myocardial sodium extraction at varied coronary flows in the dog: Estimation of capillary permeability by residue and outflow detection. Circ Res 37: 359-378, 1975. (Application to sodium exchange in the heart.) Goresky CA. Hepatic membrane carrier transport processes: Their involvement in bilirubin uptake. In: Chemistry and Physiology of Bile Pigments. Washington, D.C.: Publishing House U.S. Government, 1977, p. 265-281. Silverman M and Goresky CA. A unified kinetic hypothesis of carrier-mediated transport: Its applications. Biophys J 5: 487-509, 1965.

## Related Models

Master Two Compartment Transporter Model (includes all cases):

Transporter models from Compartment Tutorial (mostly passive exchange):- Compartmental
- Comp2Exchange: 2 compartments, no flow, 1 solute, 2 sided passive transporter
- Comp2FlowExchange: 2 compartments, with flow, 1 solute, 2 sided passive transporter
- Comp2ExchangeReaction: 2 compartments, no flow, 2 solutes, 2 sided passive transporter
- Comp2FlowExchangeReaction: 2 compartments, with flow, 2 solutes, 2 sided passive transporter
- Comp2FlowMMExchangeReaction: 2 compartments, with flow, 2 solutes, 4 single 1 sided Michaelis-Menten transporters
- Distributed
- BTEX20: 2 distributed regions (PDE), with flow, 1 solute, 2 sided passive transporter
- CTEX20: 2 distributed regions (serially connected ODEs), with flow, 1 solute, 2 sided passive transporter
- CTEX20b: 2 distributed regions (serially connected ODEs), with flow, 1 solute, 2 sided passive and 1 sided Michaelis-Menten transporter

- No Flow
- TranspMM1sidedComp2: 2 compartments, no flow, 1 solute, 1 sided MM transporter
- TranspMM.2sided.Comp2: 2 compartments, no flow, 1 solute, both 1 sided and 2 sided MM transporters
- With Flow

- 1 solute
- Transp1sol.Comp2: 2 compartments, no flow, 1 solute, T1-T2 transporter
- Transp1sol.Comp2F: 2 compartments, with flow, 1 solute, T1-T2 transporter
- Two solutes
- Transp2sol.Comp2: 2 compartments, no flow, 2 solutes, competitive T1-T2 transporter
- Transp2sol.Comp2: 2 compartments, with flow, 2 solutes, competitive T1-T2 transporter
- Transp2sol.Distrib2F: 2 regions with flow, 2 solutes, both T1-T2 and passive transporters, Michaelis-Menten enzymatic reaction, Counter-Transport Faciliation

## Key Terms

## Model Feedback

We welcome comments and feedback for this model. Please use the button below to send comments:

## Model History

Get Model history in CVS.## Acknowledgements

Please cite **www.physiome.org** in any publication for which this software is used and send one reprint to the address given below:

The National Simulation Resource, Director J. B. Bassingthwaighte, Department of Bioengineering, University of Washington, Seattle WA 98195-5061.

[This page was last modified 14Mar18, 5:07 pm.]

**Model development and archiving support at
physiome.org provided by the following grants:** NIH U01HL122199 Analyzing the Cardiac Power Grid, 09/15/2015 - 05/31/2020, NIH/NIBIB BE08407 Software Integration,
JSim and SBW 6/1/09-5/31/13; NIH/NHLBI T15 HL88516-01 Modeling for Heart, Lung and Blood: From Cell to Organ,
4/1/07-3/31/11; NSF BES-0506477 Adaptive Multi-Scale Model Simulation,
8/15/05-7/31/08; NIH/NHLBI R01 HL073598 Core 3: 3D Imaging and Computer
Modeling of the Respiratory Tract, 9/1/04-8/31/09; as well as prior
support from NIH/NCRR P41 RR01243 Simulation Resource in Circulatory Mass
Transport and Exchange, 12/1/1980-11/30/01 and NIH/NIBIB R01 EB001973
JSim: A Simulation Analysis Platform, 3/1/02-2/28/07.